2022-2023 Undergraduate Course Catalog 
    
    Nov 24, 2024  
2022-2023 Undergraduate Course Catalog [ARCHIVED CATALOG]

Chemical Engineering, BS


Department Chair:

Julie Hasenwinkel
329F Link Hall
315-443-1931; fax: 315-443-9175

Faculty

Jesse Q. Bond, Katie D. Cadwell, Ruth Chen, Viktor Cybulskis, Julie M. Hasenwinkel, James H. Henderson, Ian Hosein, Zhen Ma, Mary Beth Monroe, Shikha Nangia, Dacheng Ren, Ashok Sangani, Cindy Smith, Pranav Soman, Radhakrishna Sureshkumar, Theodore Walker, Yoaying Wu, Pun To Yung, Yi Zheng

Adjunct/Research Faculty:

Eric Finkelstein, Kent Ogden, David Quinn, Dana Radcliffe, Katherine Tsokas 

Affiliate Faculty:

Samuel Herberg, Juntao Luo, Liviu Movileanu, Davoud Mozhdehi, Alison Patteson, Rachel Steinhardt 

Emeritus Faculty:

Gustav Engbretson, John Heydweiller, George Martin, Philip Rice, Robert L. Smith, Lawrence L. Tavlarides

Undergraduate Chemical Engineering Program Director:

Katie D. Cadwell
341 Link Hall
315-443-4756

The mission of the Department of Biomedical and Chemical Engineering is to provide our students with mentoring, curricular experience and extracurricular opportunities consistent with their individual career objectives in order to:

  • Prepare them to apply science, mathematics and engineering knowledge to serve the needs of society;
  • Instill in them a deep sense of respect for others and a strong foundation in professional and social ethics;
  • Develop in them the understanding that continued education will further their professional and leadership skills.

The educational objectives of the program seek to ensure that:

  • Graduates of the program will have mastered the chemical engineering fundamentals necessary to serve as practicing engineers and will be prepared for further studies in engineering, science, or other professions. These fundamentals include an understanding of basic engineering concepts, the collection of information from experimentation and from the scientific and technical literature, and the prediction of system behavior through the development and application of mathematical models;
  • Graduates will be able to apply critical thinking, problem solving, and teamwork skills to the design of chemical engineering processes and the solution of scientific and technical problems;
  • Graduates will be able to effectively communicate their work and ideas through written, oral, and visual formats and they will understand the impacts of their actions and responsibilities to society.

Chemical engineering has a rich past; chemical engineers are the large scale manufacture of numerous products including chemicals, fibers, foods, fuels, pharmaceuticals, plastics, pulp and paper, and rubber. Because chemical engineering is the most versatile of the engineering disciplines, chemical engineers in the future will contribute to diverse new and emerging technologies. They will seek new ways to process our energy and natural resources; they will play key roles in the areas of environmental cleanup and protection, management of hazardous wastes, and process and product safety. They will be involved in new technologies such as biotechnology and biomedicine, and in the development and production of new materials such as polymers, ceramics, and advanced composites.

The chemical engineering curriculum prepares students to apply the fundamentals of chemistry, physics, and engineering to problems related to the efficient and safe production of chemical and related products. The program focuses on developing a solid background in the principles of chemical engineering and their applications to the challenges facing industry and society. If a student wishes to specialize in biochemical, environmental, or polymer materials engineering, he or she can select appropriate science and engineering courses to supplement the general curriculum. Engineering design concepts are integrated throughout all four years of the chemical engineering program.

Beginning with ECS 101  in the fall of the first year, students are introduced to the engineering method for problem solving, and concepts of engineering design. In this way students see how mathematics, basic sciences, and engineering science provide the necessary tools for design and how to go about the design process.

During the sophomore, junior, and senior years, problems of increasing complexity and open-endedness are presented to students in the chemical engineering courses, continually challenging their technical expertise, creativity, and knowledge.

Finally, in their senior year courses, students are required to complete major design projects in their courses and laboratory. These projects are open-ended and designed to build upon the students’ understanding and mastery of the fundamentals of mathematics, sciences, and engineering topics. They also consider broader social issues in addition to technical issues such as environmental impact and safety.

Many students take advantage of the low student/faculty ratio by participating in research or independent study projects. There are part-time, summer, co-op, and internship opportunities available for students seeking work experience. International study opportunities are also available.

This program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org

Student Learning Outcomes


  1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
  3. An ability to communicate effectively with a range of audiences
  4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies
  8. An ability to recognize and address chemical process safety needs in contemporary chemical engineering practice

Chemical Engineering Course Requirements


Third Year, Spring Semester (15)


Fourth Year, Fall Semester (17)


Fourth Year, Spring Semester (13)


Total: 129 credits